A191442 Dispersion of ([n*sqrt(3)+1/2]), where [ ]=floor, by antidiagonals.
1, 2, 4, 3, 7, 6, 5, 12, 10, 8, 9, 21, 17, 14, 11, 16, 36, 29, 24, 19, 13, 28, 62, 50, 42, 33, 23, 15, 48, 107, 87, 73, 57, 40, 26, 18, 83, 185, 151, 126, 99, 69, 45, 31, 20, 144, 320, 262, 218, 171, 120, 78, 54, 35, 22, 249, 554, 454, 378, 296, 208, 135, 94
Offset: 1
Examples
Northwest corner: 1....2....3....5....9 4....7....12...21...36 6....10...17...29...50 8....14...24...42...73 11...19...33...57...99
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; x = Sqr[3]; f[n_] := Floor[n*x+1/2] (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191442 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191442 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Comments