A191444 Dispersion of ([n*sqrt(3)+3/2]), where [ ]=floor, by antidiagonals.
1, 3, 2, 6, 4, 5, 11, 8, 10, 7, 20, 15, 18, 13, 9, 36, 27, 32, 24, 17, 12, 63, 48, 56, 43, 30, 22, 14, 110, 84, 98, 75, 53, 39, 25, 16, 192, 146, 171, 131, 93, 69, 44, 29, 19, 334, 254, 297, 228, 162, 121, 77, 51, 34, 21, 580, 441, 515, 396, 282, 211, 134
Offset: 1
Examples
Northwest corner: 1....3....6....11...20 2....4....8....15...27 5....10...18...32...56 7....13...24...43...75 9....17...30...53...93
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; x = Sqr[3]; f[n_] := Floor[n*x+3/2] (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191444 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191444 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Comments