A191446 Dispersion of [n*sqrt(5)], where [ ]=floor, by antidiagonals.
1, 2, 3, 4, 6, 5, 8, 13, 11, 7, 17, 29, 24, 15, 9, 38, 64, 53, 33, 20, 10, 84, 143, 118, 73, 44, 22, 12, 187, 319, 263, 163, 98, 49, 26, 14, 418, 713, 588, 364, 219, 109, 58, 31, 16, 934, 1594, 1314, 813, 489, 243, 129, 69, 35, 18, 2088, 3564, 2938, 1817
Offset: 1
Examples
Northwest corner: 1...2....4....8...17 3...6....13...29..64 5...11...24...53..118 7...15...33...73..163 9...20...44...98..219
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; x = Sqrt[5]; f[n_] := Floor[n*x] (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191446 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191446 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Extensions
Corrected typo in name and fixed Mathematica program by Vaclav Kotesovec, Oct 24 2014
Comments