A191451 Dispersion of (3*n-2), for n>=2, by antidiagonals.
1, 4, 2, 13, 7, 3, 40, 22, 10, 5, 121, 67, 31, 16, 6, 364, 202, 94, 49, 19, 8, 1093, 607, 283, 148, 58, 25, 9, 3280, 1822, 850, 445, 175, 76, 28, 11, 9841, 5467, 2551, 1336, 526, 229, 85, 34, 12, 29524, 16402, 7654, 4009, 1579, 688, 256, 103, 37, 14, 88573
Offset: 1
Examples
Northwest corner: 1...4....13...40...121 2...7....22...67...202 3...10...31...94...283 5...16...49...148..445 6...19...58...175..526
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; f[n_] :=3n+1 (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191451 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191451 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Comments