A191452 Dispersion of (4,8,12,16,...), by antidiagonals.
1, 4, 2, 16, 8, 3, 64, 32, 12, 5, 256, 128, 48, 20, 6, 1024, 512, 192, 80, 24, 7, 4096, 2048, 768, 320, 96, 28, 9, 16384, 8192, 3072, 1280, 384, 112, 36, 10, 65536, 32768, 12288, 5120, 1536, 448, 144, 40, 11, 262144, 131072, 49152, 20480, 6144, 1792, 576
Offset: 1
Examples
Northwest corner: 1...4....16...64....256 2...8....32...128...512 3...12...48...192...768 5...20...80...320...1280 6...24...96...384...1536
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050 (first 100 antidiagonals, flattened)
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; f[n_] :=4n (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191452 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191452 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Comments