This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191476 #35 Sep 16 2024 12:48:25 %S A191476 1,1,2,1,2,1,3,2,1,3,2,4,1,3,2,4,1,3,5,2,4,1,3,5,2,4,6,1,3,5,2,4,6,1, %T A191476 3,5,7,2,4,6,1,3,5,7,2,4,6,1,8,3,5,7,2,4,6,1,8,3,5,7,2,9,4,6,1,8,3,5, %U A191476 7,2,9,4,6,1,8,3,10,5,7,2,9,4,6,1,8,3 %N A191476 Values of j in the numbers 2^i*3^j, i >= 1, j >= 1, arranged in increasing order (A033845). %C A191476 This is the signature sequence of log(2)/log(3) (compare A022328). - _N. J. A. Sloane_, May 26 2024 %H A191476 Zak Seidov, <a href="/A191476/b191476.txt">Table of n, a(n) for n = 1..10000</a> %H A191476 <a href="/index/Si#signature_sequences">Index entries for sequences related to signature sequences</a> %e A191476 a(10) = 3 because A033845(10) = 108 = 2^2*3^3. %e A191476 a(100) = 7 because A033845(100) = 59872 = 2^8*3^7. %e A191476 a(1000) = 1 because A033845(1000) = 216172782113783808 = 2^56*3^1. %t A191476 mx = 1000000; t = Select[Sort[Flatten[Table[2^i 3^j, {i, Log[2, mx]}, {j, Log[3, mx]}]]], # <= mx &]; Table[FactorInteger[i][[2, 2]], {i, t}] (* _T. D. Noe_, Aug 31 2012 *) %o A191476 (Python) %o A191476 from sympy import integer_log %o A191476 def A191476(n): %o A191476 def bisection(f,kmin=0,kmax=1): %o A191476 while f(kmax) > kmax: kmax <<= 1 %o A191476 while kmax-kmin > 1: %o A191476 kmid = kmax+kmin>>1 %o A191476 if f(kmid) <= kmid: %o A191476 kmax = kmid %o A191476 else: %o A191476 kmin = kmid %o A191476 return kmax %o A191476 def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) %o A191476 return 1+integer_log((m:=bisection(f,n,n))>>(~m&m-1).bit_length(),3)[0] # _Chai Wah Wu_, Sep 15 2024 %Y A191476 Cf. A033845 (numbers 2^i*3^j), A191475 (values of i). %Y A191476 A022329 (= a(n)-1) is an essentially identical sequence. %Y A191476 See also A022328. %K A191476 nonn %O A191476 1,3 %A A191476 _Zak Seidov_, Aug 30 2012 %E A191476 Edited by _N. J. A. Sloane_, May 26 2024