This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191489 #24 Apr 08 2024 06:56:48 %S A191489 1,32,365,2048,7813,23328,58825,131072,265721,500000,885781,1492992, %T A191489 2413405,3764768,5695313,8388608,12068785,17006112,23522941,32000000, %U A191489 42883061,56689952,74017945,95551488,122070313,154457888 %N A191489 Number of compositions of even natural numbers into 6 parts <= n. %C A191489 Number of ways of placing of an even number of indistinguishable objects in 6 distinguishable boxes with condition that in each box can be at most n objects. %H A191489 Vincenzo Librandi, <a href="/A191489/b191489.txt">Table of n, a(n) for n = 0..1000</a> %H A191489 Adi Dani, <a href="http://oeis.org/wiki/User:Adi_Dani">Restricted compositions of natural numbers</a> %H A191489 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (6,-14,14,0,-14,14,-6,1). %F A191489 a(n) = ((n + 1)^6 + (1+(-1)^n)/2 )/2. %F A191489 G.f.: (x^2 + 10*x + 1)*(x^4 + 16*x^3 + 26*x^2 + 16*x + 1) / ( (1+x)*(1-x)^7 ). - _R. J. Mathar_, Jun 06 2011 %F A191489 a(2n) = A175113(n). - _R. J. Mathar_, Jun 07 2011 %e A191489 a(1)=32 compositions of even natural numbers in 6 parts <= 1 are %e A191489 :(0,0,0,0,0,0)--> 6!/(6!0!) = 1 %e A191489 :(0,0,0,0,1,1)--> 6!/(4!2!) = 15 %e A191489 :(0,0,1,1,1,1)--> 6!/(2!4!) = 15 %e A191489 :(1,1,1,1,1,1)--> 6!/(0!6!) = 1 %e A191489 a(2)=365 compositions of even natural numbers in 6 parts <= 2 are %e A191489 :(0,0,0,0,0,0)--> 6!/(6!0!0!) = 1 %e A191489 :(0,0,0,0,1,1)--> 6!/(4!2!0!) = 15 %e A191489 :(0,0,0,0,0,2)--> 6!/(5!0!1!) = 6 %e A191489 :(0,0,1,1,1,1)--> 6!/(2!4!0!) = 15 %e A191489 :(0,0,0,1,1,2)--> 6!/(3!2!1!) = 60 %e A191489 :(0,0,0,0,2,2)--> 6!/(4!0!2!) = 15 %e A191489 :(0,1,1,1,1,2)--> 6!/(1!4!1!) = 30 %e A191489 :(0,0,0,2,2,2)--> 6!/(3!0!3!) = 20 %e A191489 :(0,0,1,1,2,2)--> 6!/(2!2!2!) = 90 %e A191489 :(1,1,1,1,1,1)--> 6!/(0!6!0!) = 1 %e A191489 :(0,1,1,2,2,2)--> 6!/(1!2!3!) = 60 %e A191489 :(0,0,2,2,2,2)--> 6!/(2!0!4!) = 15 %e A191489 :(1,1,1,1,2,2)--> 6!/(0!4!2!) = 15 %e A191489 :(0,2,2,2,2,2)--> 6!/(1!0!5!) = 6 %e A191489 :(1,1,2,2,2,2)--> 6!/(0!2!4!) = 15 %e A191489 :(2,2,2,2,2,2)--> 6!/(0!0!6!) = 1 %t A191489 Table[1/2*((n + 1)^6 + (1 + (-1)^n)*1/2), {n, 0, 25}] %o A191489 (Magma) [((n + 1)^6 + (1+(-1)^n)/2 )/2: n in [0..40]]; // _Vincenzo Librandi_, Jun 16 2011 %Y A191489 Cf. A036486 (3 parts), A171714 (4 parts), A191484 (5 parts), A191494 (7 parts), A191495 (8 parts). %K A191489 nonn,easy %O A191489 0,2 %A A191489 _Adi Dani_, Jun 03 2011