cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191522 Number of valleys in all left factors of Dyck paths of length n. A valley is a (1,-1)-step followed by a (1,1)-step.

This page as a plain text file.
%I A191522 #28 Sep 15 2023 04:23:55
%S A191522 0,0,0,1,3,8,20,45,105,224,504,1050,2310,4752,10296,21021,45045,91520,
%T A191522 194480,393822,831402,1679600,3527160,7113106,14872858,29953728,
%U A191522 62403600,125550100,260757900,524190240,1085822640,2181340125,4508102925,9051563520,18668849760
%N A191522 Number of valleys in all left factors of Dyck paths of length n. A valley is a (1,-1)-step followed by a (1,1)-step.
%C A191522 a(n+2) is also the sum of the maximum elements of each subset of [n]={1,...,n} with size floor((n+1)/2). For example for n=3 there are three subsets {1,2},{1,3},{2,3} and the sum of maximum values is 2+3+3=8. - _Fabio VisonĂ _, Aug 13 2023
%H A191522 G. C. Greubel, <a href="/A191522/b191522.txt">Table of n, a(n) for n = 0..1000</a>
%H A191522 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/a/4751513/573047">Possible new formula for OEIS A191522</a>
%F A191522 a(n) = Sum_{k>=0} k*A191521(n,k).
%F A191522 G.f.: 2*((1-z-3*z^2+z^3)*q-1+z+5*z^2-3*z^3-4*z^4)/(z*q*(1-2*z-q)^2), where q = sqrt(1-4*z^2).
%F A191522 a(n) ~ 2^(n-3/2)*sqrt(n)/sqrt(Pi). - _Vaclav Kotesovec_, Mar 21 2014
%F A191522 D-finite with recurrence -2*(n+1)*(n-3)*a(n) +(-5*n^2+29*n-6)*a(n-1) +2*(4*n+5)*(n-2)*a(n-2) +20*(n-2)*(n-3)*a(n-3)=0. - _R. J. Mathar_, Jul 26 2022
%F A191522 a(n) = floor((n-1)/2)*binomial(n-1,floor((n-1)/2)+1), n > 0. - _Fabio VisonĂ _, Aug 13 2023
%e A191522 a(4)=3 because the total number of valleys in UDUD, UDUU, UUDD, UUDU, UUUD, and UUUU is 1+1+0+1+0+0=3; here U=(1,1), D=(1,-1).
%p A191522 q := sqrt(1-4*z^2): g := (2*((1-z-3*z^2+z^3)*q-1+z+5*z^2-3*z^3-4*z^4))/(z*q*(1-2*z-q)^2): gser := series(g, z = 0, 36): seq(coeff(gser, z, n), n = 0 .. 33);
%t A191522 CoefficientList[Series[(2*((1-x-3*x^2+x^3)*Sqrt[1-4*x^2]-1+x+5*x^2-3*x^3-4*x^4))/(x*Sqrt[1-4*x^2]*(1-2*x-Sqrt[1-4*x^2])^2), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 21 2014 *)
%o A191522 (PARI) x='x+O('x^50); concat([0,0,0], Vec((2*((1-x-3*x^2+x^3)*sqrt(1-4*x^2)-1+x+5*x^2-3*x^3-4*x^4))/(x*sqrt(1-4*x^2)*(1-2*x-sqrt(1-4*x^2))^2))) \\ _G. C. Greubel_, Mar 26 2017
%Y A191522 Cf. A191521.
%K A191522 nonn
%O A191522 0,5
%A A191522 _Emeric Deutsch_, Jun 05 2011