cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191527 Number of turns in all left factors of Dyck paths of length n.

This page as a plain text file.
%I A191527 #20 Jul 22 2022 11:42:55
%S A191527 0,0,1,3,9,20,50,105,245,504,1134,2310,5082,10296,22308,45045,96525,
%T A191527 194480,413270,831402,1755182,3527160,7407036,14872858,31097794,
%U A191527 62403600,130007500,260757900,541574100,1085822640,2249204040,4508102925,9316746045
%N A191527 Number of turns in all left factors of Dyck paths of length n.
%H A191527 G. C. Greubel, <a href="/A191527/b191527.txt">Table of n, a(n) for n = 0..1000</a>
%F A191527 a(n) = Sum_{k=0..n} k*binomial(floor((n-1)/2), floor(k/2))*binomial(ceiling((n-1)/2), ceiling(k/2)).
%F A191527 G.f.: g(z)=2*z^2*(1-4*z^2-4*z^3)/((1-2*z)*((1+z)*(1-4*z^2)*(1-2*z)+(1-z-4*z^2)*sqrt(1-4*z^2))).
%F A191527 a(n) ~ 2^(n-1/2)*sqrt(n)/sqrt(Pi). - _Vaclav Kotesovec_, Mar 21 2014
%F A191527 D-finite with recurrence (n+1)*a(n) + (-n-1)*a(n-1) + 2*(-4*n+5)*a(n-2) + 4*(n+1)*a(n-3) + 16*(n-3)*a(n-4) = 0. - _R. J. Mathar_, Jun 06 2014
%e A191527 a(4)=9 because in UDUD, UDUU, UUDD, UUDU, UUUD, and UUUU we have a total of 3+2+1+2+1+0=9 turns (here U=(1,1) and D=(1,-1)).
%p A191527 g := 2*z^2*(1-4*z^2-4*z^3)/((1-2*z)*((1+z)*(1-4*z^2)*(1-2*z)+(1-z-4*z^2)*sqrt(1-4*z^2))): gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);
%p A191527 a := proc (n) options operator, arrow: sum(k*binomial(floor((1/2)*n-1/2), floor((1/2)*k))*binomial(ceil((1/2)*n-1/2), ceil((1/2)*k)), k = 0 .. n) end proc: seq(a(n), n = 0 .. 32);
%t A191527 CoefficientList[Series[2*x^2*(1-4*x^2-4*x^3)/((1-2*x)*((1+x)*(1-4*x^2)*(1-2*x)+(1-x-4*x^2)*Sqrt[1-4*x^2])), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 21 2014 *)
%o A191527 (PARI) x='x+O('x^50); concat([0,0], Vec(2*x^2*(1-4*x^2-4*x^3)/((1-2*x)*((1+x)*(1-4*x^2)*(1-2*x)+(1-x-4*x^2)*sqrt(1-4*x^2))))) \\ _G. C. Greubel_, May 27 2017
%Y A191527 Cf. A088855.
%K A191527 nonn
%O A191527 0,4
%A A191527 _Emeric Deutsch_, Jun 06 2011