A191528 Triangle read by rows: T(n,k) is the number of left factors of Dyck paths of length n that have k returns to the axis.
1, 1, 1, 1, 2, 1, 3, 2, 1, 6, 3, 1, 10, 6, 3, 1, 20, 10, 4, 1, 35, 20, 10, 4, 1, 70, 35, 15, 5, 1, 126, 70, 35, 15, 5, 1, 252, 126, 56, 21, 6, 1, 462, 252, 126, 56, 21, 6, 1, 924, 462, 210, 84, 28, 7, 1, 1716, 924, 462, 210, 84, 28, 7, 1, 3432, 1716, 792, 330, 120, 36, 8, 1, 6435, 3432, 1716, 792, 330, 120, 36, 8, 1
Offset: 0
Examples
T(6,2)=3 because we have U(D)U(D)UU, U(D)UUD(D), and UUD(D)U(D), where U=(1,1) and D=(1,-1) (the return steps to the axis are shown between parentheses). Triangle starts: 1: 1; 1, 1; 2, 1; 3, 2, 1; 6, 3, 1; 10, 6, 3, 1;
Links
- Indranil Ghosh, Rows 0..100, flattened
Programs
-
Maple
T := proc (n, k) if k <= floor((1/2)*n) then binomial(n-k-1, ceil((1/2)*n)-1) else 0 end if end proc: for n from 0 to 16 do seq(T(n, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
-
Mathematica
Flatten[Table[Binomial[n-k-1,Ceiling[(n/2)-1]],{n,0,16},{k,0,Floor[n/2]}]] (* Indranil Ghosh, Mar 05 2017 *)
-
PARI
tabf(nn) = if(n==0, print1(1,", "), {for (n=1, nn, for(k=0, floor(n/2), print1(binomial(n-k-1, ceil((n/2)-1)),", ");); print();); }); tabf(16); \\ Indranil Ghosh, Mar 05 2017
Formula
T(n,k) = binomial(n-k-1, ceiling(n/2)-1) if 0 <= k <= floor(n/2).
G.f.: G(t,z) = 1/((1-z*c)*(1-t*z^2*c)), where c = (1-sqrt(1-4*z^2))/(2*z^2) is the Catalan function with argument z^2.
Comments