A191540 Dispersion of (floor(2*n*sqrt(2))), by antidiagonals.
1, 2, 3, 5, 8, 4, 14, 22, 11, 6, 39, 62, 31, 16, 7, 110, 175, 87, 45, 19, 9, 311, 494, 246, 127, 53, 25, 10, 879, 1397, 695, 359, 149, 70, 28, 12, 2486, 3951, 1965, 1015, 421, 197, 79, 33, 13, 7031, 11175, 5557, 2870, 1190, 557, 223, 93, 36, 15, 19886, 31607
Offset: 1
Examples
Northwest corner: 1, 2, 5, 14, 39, ... 3, 8, 22, 62, 175, ... 4, 11, 31, 87, 246, ... 6, 16, 45, 127, 359, ... 7, 19, 53, 149, 421, ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
(* Program generates the dispersion array T of the increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; f[n_] :=Floor[2n*Sqrt[2]] (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]] (* A191540 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191540 sequence *)
Comments