A191537 Dispersion of (4*n-floor(n*sqrt(2))), by antidiagonals.
1, 3, 2, 8, 6, 4, 21, 16, 11, 5, 55, 42, 29, 13, 7, 143, 109, 75, 34, 19, 9, 370, 282, 194, 88, 50, 24, 10, 957, 730, 502, 228, 130, 63, 26, 12, 2475, 1888, 1299, 590, 337, 163, 68, 32, 14, 6400, 4882, 3359, 1526, 872, 422, 176, 83, 37, 15, 16550, 12624
Offset: 1
Examples
Northwest corner: 1, 3, 8, 21, 55, ... 2, 6, 16, 42, 109, ... 4, 11, 29, 75, 194, ... 5, 13, 34, 88, 228, ... 7, 19, 50, 130, 337, ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
(* Program generates the dispersion array T of the increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; f[n_] :=4n-Floor[n*Sqrt[2]] (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]] (* A191537 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191537 sequence *) (* Clark Kimberling, Jun 06 2011 *)
Comments