A191538 Dispersion of (4*n-floor(n*sqrt(3))), by antidiagonals.
1, 3, 2, 7, 5, 4, 16, 12, 10, 6, 37, 28, 23, 14, 8, 84, 64, 53, 32, 19, 9, 191, 146, 121, 73, 44, 21, 11, 434, 332, 275, 166, 100, 48, 25, 13, 985, 753, 624, 377, 227, 109, 57, 30, 15, 2234, 1708, 1416, 856, 515, 248, 130, 69, 35, 17, 5067, 3874, 3212, 1942
Offset: 1
Examples
Northwest corner: 1, 3, 7, 16, 37, ... 2, 5, 12, 28, 64, ... 4, 10, 23, 53, 121, ... 6, 14, 32, 73, 166, ... 8, 19, 44, 100, 227, ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
(* Program generates the dispersion array T of the increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; f[n_] :=4n-Floor[n*Sqrt[3]] (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]] (* A191538 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191538 sequence *)
Comments