A191539 Dispersion of (5*n-floor(n*sqrt(5))), by antidiagonals.
1, 3, 2, 9, 6, 4, 25, 17, 12, 5, 70, 47, 34, 14, 7, 194, 130, 94, 39, 20, 8, 537, 360, 260, 108, 56, 23, 10, 1485, 996, 719, 299, 155, 64, 28, 11, 4105, 2753, 1988, 827, 429, 177, 78, 31, 13, 11346, 7610, 5495, 2286, 1186, 490, 216, 86, 36, 15, 31360, 21034
Offset: 1
Examples
Northwest corner: 1...3....9....25...70 2...6....17...47...130 4...12...34...94...260 5...14...39...108..299 7...20...56...155..429
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
(* Program generates the dispersion array T of the increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; f[n_] :=5n-Floor[n*Sqrt[5]] (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]] (* A191539 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191539 sequence *)
Comments