A191554 a(n) = Product_{k=1..n} prime(k)^(2^(k-1)).
2, 18, 11250, 64854011250, 2980024297506569894680811250, 1319492964487055911863581348741902326769016593763234907139211250
Offset: 1
Examples
a(1) = 2^1 = 2 and x^2 - 2 is the minimal polynomial for the algebraic number sqrt(2). a(4) = 2^1*3^2*5^4*7^8 = 64854011250 and x^16 - 64854011250 is the minimal polynomial for the algebraic number sqrt(7*sqrt(5*sqrt(3*sqrt(2)))).
Crossrefs
Cf. A191555.
Programs
-
PARI
a(n) = prod(k=1, n, prime(k)^(2^(k-1)))
Formula
For n > 1, a(n) = a(n-1) * prime(n)^(2^(n-1)); a(1) = prime(1).
Comments