A191581 Numbers whose sum of their anti-divisors divides the sum of their divisors.
3, 6, 11, 22, 30, 33, 65, 82, 117, 218, 354, 483, 508, 537, 3276, 6430, 21541, 117818, 130356, 753612, 1007328, 2113416, 2379540, 3589646, 7231219, 7346148, 8515767, 13050345, 20199648, 34424166, 44575896, 47245905, 50414595, 104335023, 217728002, 1217532421
Offset: 1
Examples
6-> sum divisors=sigma(6)=12; sum anti-divisors=4; 12/4=3. 30-> sum divisors=sigma(30)=72; sum anti-divisors=4+12+20=36; 72/36=2.
Programs
-
Maple
with(numtheory): P:=proc(i) local a, b, j, k, s, n; for n from 3 to i do b:=divisors(n); s:=add(b[k],k=1..nops(b)); k:=0; j:=n; while j mod 2 <> 1 do k:=k+1; j:=j/2; od; a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2; if type(s/a,integer) then print(n); fi; od; end: P(10^6);
-
Mathematica
f[n_] := Total@ Cases[Range[2, n - 1], ?(Abs[Mod[n, #] - #/2] < 1 &)]; Select[Range[3, 10^3], Mod[DivisorSigma[1, #], f@ #] == 0 &] (* _Michael De Vlieger, Oct 08 2015 *)
Formula
Extensions
a(21)-a(36) from Donovan Johnson, Jun 24 2012
Comments