This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191593 #18 Sep 08 2022 08:45:57 %S A191593 1,34,169,478,1033,1906,3169,4894,7153,10018,13561,17854,22969,28978, %T A191593 35953,43966,53089,63394,74953,87838,102121,117874,135169,154078, %U A191593 174673,197026,221209,247294,275353,305458,337681 %N A191593 Number of partitions of 12*n into parts < 5. %C A191593 Number of ways of placing of 12*n indistinguishable objects into indistinguishable boxes with condition that in each box can be at most 4 objects. %H A191593 Vincenzo Librandi, <a href="/A191593/b191593.txt">Table of n, a(n) for n = 0..1000</a> %H A191593 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A191593 a(n) = 12*n^3 + 15*n^2 + 6*n + 1. %F A191593 From _R. J. Mathar_, Jun 08 2011: (Start) %F A191593 a(n) = A001400(12n) = A014126(6n). %F A191593 G.f.: (1 + 30*x + 39*x^2 + 2*x^3) / (x-1)^4. (End) %e A191593 a(1)=34 all partitions of 1*12=12 into parts < 5 are: %e A191593 [1,1,1,1,1,1,1,1,1,1,1,1], %e A191593 [1,1,1,1,1,1,1,1,1,1,2], %e A191593 [1,1,1,1,1,1,1,1,1,3], %e A191593 [1,1,1,1,1,1,1,1,2,2], %e A191593 [1,1,1,1,1,1,1,1,4], %e A191593 [1,1,1,1,1,1,1,2,3], %e A191593 [1,1,1,1,1,1,2,2,2], %e A191593 [1,1,1,1,1,1,2,4], %e A191593 [1,1,1,1,1,1,3,3], %e A191593 [1,1,1,1,1,2,2,3], %e A191593 [1,1,1,1,2,2,2,2], %e A191593 [1,1,1,1,1,3,4], %e A191593 [1,1,1,1,2,2,4], %e A191593 [1,1,1,1,2,3,3], %e A191593 [1,1,1,2,2,2,3], %e A191593 [1,1,2,2,2,2,2], %e A191593 [1,1,1,1,4,4], %e A191593 [1,1,1,2,3,4], %e A191593 [1,1,1,3,3,3], %e A191593 [1,1,2,2,2,4], %e A191593 [1,1,2,2,3,3], %e A191593 [1,2,2,2,2,3], %e A191593 [2,2,2,2,2,2], %e A191593 [1,1,2,4,4], %e A191593 [1,1,3,3,4], %e A191593 [1,2,2,3,4], %e A191593 [1,2,3,3,3], %e A191593 [2,2,2,2,4], %e A191593 [2,2,2,3,3], %e A191593 [1,3,4,4], %e A191593 [2,2,4,4], %e A191593 [2,3,3,4], %e A191593 [3,3,3,3], %e A191593 [4,4,4]. %t A191593 Table[12n^3 + 15n^2 + 6n + 1, {n, 0, 30}] %o A191593 (Magma) [12*n^3+15*n^2+6*n+1: n in [0..30]]; // _Vincenzo Librandi_, Jun 16 2011 %K A191593 nonn,easy %O A191593 0,2 %A A191593 _Adi Dani_, Jun 07 2011