cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191622 Decimal expansion of the growth constant for the partial sums of maximal unitary squarefree divisors.

This page as a plain text file.
%I A191622 #36 Jun 29 2023 09:24:49
%S A191622 6,4,9,6,0,6,6,9,9,3,3,7,3,4,1,1,9,4,7,3,3,9,0,4,8,8,0,4,8,0,2,1,2,1,
%T A191622 2,6,7,0,3,8,1,0,8,9,9,3,1,9,8,8,2,8,8,3,9,1,8,3,2,1,0,3,9,2,6,1,3,2,
%U A191622 0,7,1,0,4,2,8,9,5,5,1,4,6,2,7,2,0,3,5,3,5,1,9,3,7,2,1,1,9,8,0,0,7,2,0,3,8,5
%N A191622 Decimal expansion of the growth constant for the partial sums of maximal unitary squarefree divisors.
%C A191622 The partial sums grow Sum_{n=1..N} A055231(n) = (this constant)*N^2/2 +O(N^(3/2)).
%H A191622 Maurice-Étienne Cloutier, <a href="http://hdl.handle.net/20.500.11794/28374">Les parties k-puissante et k-libre d’un nombre</a>, Thèse de doctorat, Université Laval (2018).
%H A191622 Maurice-Étienne Cloutier, Jean-Marie De Koninck, and Nicolas Doyon, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Cloutier/cloutier2.html">On the powerful and squarefree parts of an integer</a>, Journal of Integer Sequences,  Vol. 17 (2014), Article 14.6.6.
%H A191622 Steven R. Finch, <a href="/A007947/a007947.pdf">Unitarism and Infinitarism</a>, February 25, 2004, Section 0.4. [Cached copy, with permission of the author]
%H A191622 Steven R. Finch, <a href="https://doi.org/10.1017/9781316997741">Mathematical Constants II</a>, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 52 (constant beta).
%F A191622 Equals Product_{primes p=2,3,5,7,...} ( 1 - (p^2+p-1)/(p^3*(p+1)) ).
%F A191622 The constant d2 in the paper by Cloutier et al. such that Sum_{k=1..x} 1/A057521(x) = d2*x + O(x^(1/2)). - _Amiram Eldar_, Oct 01 2019
%e A191622 0.64960669933734119473390488048021212670381089931988288391832103926132071...
%t A191622 $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{-2, 0, 2, 0, -1}, {0, -2, 0, 2, -5}, m]; RealDigits[Exp[NSum[Indexed[c, n]*PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] (* _Amiram Eldar_, Jun 19 2019 *)
%o A191622 (PARI) prodeulerrat(1 - (p^2+p-1)/(p^3*(p+1))) \\ _Amiram Eldar_, Mar 17 2021
%Y A191622 Cf. A055231, A057521.
%K A191622 cons,nonn
%O A191622 0,1
%A A191622 _R. J. Mathar_, Jun 09 2011
%E A191622 More terms from _Amiram Eldar_, Jun 19 2019
%E A191622 More terms from _Vaclav Kotesovec_, Jun 13 2021