cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191642 Kochański's (or Kochanski's) sequence.

Original entry on oeis.org

15, 4697, 5548, 14774, 33696, 61072, 111231, 115985, 173819, 563316, 606004, 1751458, 1952544, 3046715, 4397195, 45051907, 653475595, 734915444, 1241384578, 2438767174, 2557084119, 5090226634, 6088149715, 18483120028, 44254634530, 48502484589, 70835215004
Offset: 1

Views

Author

Henryk Fuks, Jun 09 2011

Keywords

Comments

The sequence of "genitores" used to generate approximants of Pi.

References

  • A. A. Kochański, Observationes cyclometricae ad facilitandam praxin accomodatae, Acta Eruditorum 4 (1685) 394-398.

Crossrefs

Programs

  • Maple
    Digits := 100;
    alpha:=Pi;
    a:= floor(alpha);
    g:=(R,S)->floor( (alpha-a)/(R-alpha*S));
    S[1]:=floor(1/(alpha-a));
    R[1]:=1+a*S[1];
    for n from 2 to 10 do
    S[n] := S[n-1]*(g(R[n-1], S[n-1])+1)+1:
    R[n] := R[n-1]*(g(R[n-1], S[n-1])+1)+a:
    end do:
    seq(g(R[i], S[i]), i = 1 .. 10);
  • Mathematica
    g[x_, y_] = Floor[N[(Pi - 3)/(x - Pi*y), 200]];
    R = 22; S = 7;
    Reap[For[i = 1, i <= 27, i++, b = g[R, S]; S = S*(b+1)+1; R = R*(b+1)+3; Print[b]; Sow[b]]][[2, 1]]; (* Jean-François Alcover, Feb 21 2019, from PARI *)
  • PARI
    default(realprecision, 1000);
    g(x,y)=floor( (Pi-3)/(x-Pi*y))
    R=22; S=7; for(i=1,35, b=g(R,S); S=S*(b+1)+1; R=R*(b+1)+3; print1(b,", "))

Extensions

I added the unaccented version of the name to the definition, to make it easier to search for. - N. J. A. Sloane, Jan 12 2012