cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191649 Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (1,1), (2,2).

This page as a plain text file.
%I A191649 #34 Apr 18 2025 13:12:38
%S A191649 1,3,14,71,379,2082,11651,66051,378064,2180037,12644861,73695358,
%T A191649 431209313,2531556197,14904832196,87970766447,520337606401,
%U A191649 3083584244460,18304476242735,108820740004749,647817646760368,3861215365595659,23039691494489015,137615812845579390
%N A191649 Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (1,1), (2,2).
%H A191649 G. C. Greubel, <a href="/A191649/b191649.txt">Table of n, a(n) for n = 0..1000</a>
%H A191649 Paul Barry, <a href="https://arxiv.org/abs/2504.09719">Notes on Riordan arrays and lattice paths</a>, arXiv:2504.09719 [math.CO], 2025. See pp. 9, 29.
%F A191649 G.f.: 1/sqrt(x^4 +2*x^3 -x^2 -6*x +1). - _Mark van Hoeij_, Apr 17 2013
%F A191649 D-finite with recurrence: n*a(n) +3*(-2*n+1)*a(n-1) +(-n+1)*a(n-2) +(2*n-3)*a(n-3) +(n-2)*a(n-4)=0. - _R. J. Mathar_, Oct 08 2016
%t A191649 CoefficientList[Series[1/Sqrt[x^4 + 2 x^3 - x^2 - 6 x + 1], {x, 0, 23}], x] (* _Michael De Vlieger_, Oct 08 2016 *)
%o A191649 (PARI) /* same as in A092566 but use */
%o A191649 steps=[[0,1], [1,0], [1,1], [2,2]];
%o A191649 /* _Joerg Arndt_, Jun 30 2011 */
%o A191649 (PARI) my(x='x+O('x^30)); Vec(1/sqrt(x^4+2*x^3-x^2-6*x+1)) \\ _G. C. Greubel_, Apr 29 2019
%o A191649 (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt(x^4+2*x^3-x^2-6*x+1) )); // _G. C. Greubel_, Apr 29 2019
%o A191649 (Sage) (1/sqrt(x^4+2*x^3-x^2-6*x+1)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 29 2019
%Y A191649 Cf. A001850, A026641, A036355, A137644, A192364, A192365, A192369, A191354.
%K A191649 nonn
%O A191649 0,2
%A A191649 _Joerg Arndt_, Jun 30 2011