A191656 Dispersion of (2,4,5,7,8,10,...), by antidiagonals.
1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 11, 13, 16, 14, 12, 17, 20, 25, 22, 19, 15, 26, 31, 38, 34, 29, 23, 18, 40, 47, 58, 52, 44, 35, 28, 21, 61, 71, 88, 79, 67, 53, 43, 32, 24, 92, 107, 133, 119, 101, 80, 65, 49, 37, 27, 139, 161, 200, 179, 152, 121, 98, 74, 56
Offset: 1
Examples
Northwest corner: 1...2....4....7....11 3...5....8....13...20 6...10...16...25...38 9...14...22...34...52 12..19...29...44...67
Programs
-
Mathematica
(* Program generates the dispersion array T of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a = 2; b = 4; m[n_] := If[Mod[n, 2] == 0, 1, 0]; f[n_] := a*m[n + 1] + b*m[n] + 3*Floor[(n - 1)/2] Table[f[n], {n, 1, 30}] (* A001651: (2+5k,4+5k, k>=0) *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i,1,10}, {j,1,10}]] (* A191656 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191656 sequence *)
Comments