A191664 Dispersion of A014601 (numbers >2, congruent to 0 or 3 mod 4), by antidiagonals.
1, 3, 2, 7, 4, 5, 15, 8, 11, 6, 31, 16, 23, 12, 9, 63, 32, 47, 24, 19, 10, 127, 64, 95, 48, 39, 20, 13, 255, 128, 191, 96, 79, 40, 27, 14, 511, 256, 383, 192, 159, 80, 55, 28, 17, 1023, 512, 767, 384, 319, 160, 111, 56, 35, 18, 2047, 1024, 1535, 768, 639
Offset: 1
Examples
Northwest corner: 1...3...7....15...31 2...4...8....16...32 5...11..23...47...95 6...12..24...48...96 9...19..39...79...159
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050 (first 100 antidiagonals, flattened)
Programs
-
Mathematica
(* Program generates the dispersion array T of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a = 3; b = 4; m[n_] := If[Mod[n, 2] == 0, 1, 0]; f[n_] := a*m[n + 1] + b*m[n] + 4*Floor[(n - 1)/2] Table[f[n], {n, 1, 30}] (* A014601(n+2): (4+4k,5+4k) *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191664 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191664 *) (* Clark Kimberling, Jun 11 2011 *) Grid[Table[2^k*(2*Floor[(n + 1)/2] - 1) - Mod[n, 2], {n, 12}, {k, 12}]] (* L. Edson Jeffery, Aug 13 2014 *)
Comments