A191666 Dispersion of A042964 (numbers congruent to 2 or 3 mod 4), by antidiagonals.
1, 2, 4, 3, 7, 5, 6, 14, 10, 8, 11, 27, 19, 15, 9, 22, 54, 38, 30, 18, 12, 43, 107, 75, 59, 35, 23, 13, 86, 214, 150, 118, 70, 46, 26, 16, 171, 427, 299, 235, 139, 91, 51, 31, 17, 342, 854, 598, 470, 278, 182, 102, 62, 34, 20, 683, 1707, 1195, 939, 555, 363
Offset: 1
Examples
Northwest corner: 1...2...3....6...11 4...7...14....27...54 5...10...19...38...75 8...15..30...59...118 8...18..35...70...139
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050 (first 100 antidiagonals, flattened)
Programs
-
Mathematica
(* Program generates the dispersion array T of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a = 2; b = 3; m[n_] := If[Mod[n, 2] == 0, 1, 0]; f[n_] := a*m[n + 1] + b*m[n] + 4*Floor[(n - 1)/2] Table[f[n], {n, 1, 30}] (* A042964: (2+4k,3+4k) *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191666 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191666 *)
Comments