This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191667 #15 Oct 18 2017 05:06:26 %S A191667 1,5,2,21,9,3,85,37,13,4,341,149,53,17,6,1365,597,213,69,25,7,5461, %T A191667 2389,853,277,101,29,8,21845,9557,3413,1109,405,117,33,10,87381,38229, %U A191667 13653,4437,1621,469,133,41,11,349525,152917,54613,17749,6485,1877,533 %N A191667 Dispersion of A016813 (4k+1, k>1), by antidiagonals. %C A191667 For a background discussion of dispersions, see A191426. %C A191667 ... %C A191667 Each of the sequences (4n, n>2), (4n+1, n>0), (3n+2, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The six sequences and dispersions are listed here: %C A191667 ... %C A191667 A191452=dispersion of A008586 (4k, k>=1) %C A191667 A191667=dispersion of A016813 (4k+1, k>=1) %C A191667 A191668=dispersion of A016825 (4k+2, k>=0) %C A191667 A191669=dispersion of A004767 (4k+3, k>=0) %C A191667 A191670=dispersion of A042968 (1 or 2 or 3 mod 4 and >=2) %C A191667 A191671=dispersion of A004772 (0 or 1 or 3 mod 4 and >=2) %C A191667 A191672=dispersion of A004773 (0 or 1 or 2 mod 4 and >=2) %C A191667 A191673=dispersion of A004773 (0 or 2 or 3 mod 4 and >=2) %C A191667 ... %C A191667 EXCEPT for at most 2 initial terms (so that column 1 always starts with 1): %C A191667 A191452 has 1st col A042968, all else A008486 %C A191667 A191667 has 1st col A004772, all else A016813 %C A191667 A191668 has 1st col A042965, all else A016825 %C A191667 A191669 has 1st col A004773, all else A004767 %C A191667 A191670 has 1st col A008486, all else A042968 %C A191667 A191671 has 1st col A016813, all else A004772 %C A191667 A191672 has 1st col A016825, all else A042965 %C A191667 A191673 has 1st col A004767, all else A004773 %C A191667 ... %C A191667 Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c mod m)", (as in the Mathematica program below): %C A191667 If f(n)=(n mod 3), then (a,b,c,a,b,c,a,b,c,...) is given by a*f(n+2)+b*f(n+1)+c*f(n), so that "(a or b or c mod m)" is given by a*f(n+2)+b*f(n+1)+c*f(n)+m*floor((n-1)/3)), for n>=1. %H A191667 Ivan Neretin, <a href="/A191667/b191667.txt">Table of n, a(n) for n = 1..5050</a> (first 100 antidiagonals, flattened) %e A191667 Northwest corner: %e A191667 1....5....21....85....341 %e A191667 2....9....37....149...597 %e A191667 3....13...53....213...853 %e A191667 4....17...69....277...1109 %e A191667 6....25...101...405...1621 %t A191667 (* Program generates the dispersion array T of the increasing sequence f[n] *) %t A191667 r = 40; r1 = 12; c = 40; c1 = 12; %t A191667 f[n_] := 4*n+1 %t A191667 Table[f[n], {n, 1, 30}] (* A016813 *) %t A191667 mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] %t A191667 rows = {NestList[f, 1, c]}; %t A191667 Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; %t A191667 t[i_, j_] := rows[[i, j]]; %t A191667 TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191667 *) %t A191667 Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191667 *) %Y A191667 Row 1: A002450. %Y A191667 Cf. A004772, A016813, A191671, A191426. %K A191667 nonn,tabl %O A191667 1,2 %A A191667 _Clark Kimberling_, Jun 11 2011