A191668 Dispersion of A016825 (4k+2, k>0), by antidiagonals.
1, 2, 3, 6, 10, 4, 22, 38, 14, 5, 86, 150, 54, 18, 7, 342, 598, 214, 70, 26, 8, 1366, 2390, 854, 278, 102, 30, 9, 5462, 9558, 3414, 1110, 406, 118, 34, 11, 21846, 38230, 13654, 4438, 1622, 470, 134, 42, 12, 87382, 152918, 54614, 17750, 6486, 1878, 534, 166
Offset: 1
Examples
Northwest corner: . 1 2 6 22 86 342 1366 5462 21846 87382 . 3 10 38 150 598 2390 9558 38230 152918 611670 . 4 14 54 214 854 3414 13654 54614 218454 873814 . 5 18 70 278 1110 4438 17750 70998 283990 1135958 . 7 26 102 406 1622 6486 25942 103766 415062 1660246 . 8 30 118 470 1878 7510 30038 120150 480598 1922390 . 9 34 134 534 2134 8534 34134 136534 546134 2184534 . 11 42 166 662 2646 10582 42326 169302 677206 2708822 . 12 46 182 726 2902 11606 46422 185686 742742 2970966 . 13 50 198 790 3158 12630 50518 202070 808278 3233110
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050 (first 100 antidiagonals, flattened)
Programs
-
Mathematica
(* Program generates the dispersion array T of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; f[n_] := 4*n-2 Table[f[n], {n, 1, 30}] (* A016825 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191668 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191668 *) (* Conjectured: *) Grid[Table[(8 + (3*Floor[(4*n + 1)/3] - 2)*4^k)/12, {n, 10}, {k, 10}]] (* L. Edson Jeffery, Feb 14 2015 *)
Formula
Conjecture: a(n,k) = (8 + (3*floor((4*n + 1)/3) - 2)*4^k)/12 = (8 + (3*A042965(n+1) - 2)*A000302(k))/12. - L. Edson Jeffery, Feb 14 2015
Comments