This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191669 #12 Oct 18 2017 05:06:43 %S A191669 1,3,2,11,7,4,43,27,15,5,171,107,59,19,6,683,427,235,75,23,8,2731, %T A191669 1707,939,299,91,31,9,10923,6827,3755,1195,363,123,35,10,43691,27307, %U A191669 15019,4779,1451,491,139,39,12,174763,109227,60075,19115,5803,1963,555,155 %N A191669 Dispersion of A004767 (4k+3, k>=0), by antidiagonals. %C A191669 For a background discussion of dispersions, see A191426. %C A191669 ... %C A191669 Each of the sequences (4n, n>2), (4n+1, n>0), (3n+2, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The six sequences and dispersions are listed here: %C A191669 ... %C A191669 A191452=dispersion of A008586 (4k, k>=1) %C A191669 A191667=dispersion of A016813 (4k+1, k>=1) %C A191669 A191668=dispersion of A016825 (4k+2, k>=0) %C A191669 A191669=dispersion of A004767 (4k+3, k>=0) %C A191669 A191670=dispersion of A042968 (1 or 2 or 3 mod 4 and >=2) %C A191669 A191671=dispersion of A004772 (0 or 1 or 3 mod 4 and >=2) %C A191669 A191672=dispersion of A004773 (0 or 1 or 2 mod 4 and >=2) %C A191669 A191673=dispersion of A004773 (0 or 2 or 3 mod 4 and >=2) %C A191669 ... %C A191669 EXCEPT for at most 2 initial terms (so that column 1 always starts with 1): %C A191669 A191452 has 1st col A042968, all else A008486 %C A191669 A191667 has 1st col A004772, all else A016813 %C A191669 A191668 has 1st col A042965, all else A016825 %C A191669 A191669 has 1st col A004773, all else A004767 %C A191669 A191670 has 1st col A008486, all else A042968 %C A191669 A191671 has 1st col A016813, all else A004772 %C A191669 A191672 has 1st col A016825, all else A042965 %C A191669 A191673 has 1st col A004767, all else A004773 %C A191669 ... %C A191669 Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c mod m)", (as in the Mathematica program below): %C A191669 If f(n)=(n mod 3), then (a,b,c,a,b,c,a,b,c,...) is given by %C A191669 a*f(n+2)+b*f(n+1)+c*f(n), so that "(a or b or c mod m)" is given by %C A191669 a*f(n+2)+b*f(n+1)+c*f(n)+m*floor((n-1)/3)), for n>=1. %H A191669 Ivan Neretin, <a href="/A191669/b191669.txt">Table of n, a(n) for n = 1..5050</a> (first 100 antidiagonals, flattened) %e A191669 Northwest corner: %e A191669 1...3....11....43....171 %e A191669 2...7....27....107...427 %e A191669 4...15...59....235...939 %e A191669 5...19...75....299...1195 %e A191669 6...23...91....363...1451 %t A191669 (* Program generates the dispersion array T of the increasing sequence f[n] *) %t A191669 r = 40; r1 = 12; c = 40; c1 = 12; %t A191669 f[n_] := 4*n-1 %t A191669 Table[f[n], {n, 1, 30}] (* A004767 *) %t A191669 mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] %t A191669 rows = {NestList[f, 1, c]}; %t A191669 Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; %t A191669 t[i_, j_] := rows[[i, j]]; %t A191669 TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191669 *) %t A191669 Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191669 *) %Y A191669 Row 1: A007583, Row 2: A136412. %Y A191669 Cf. A004773, A004767, A191673, A191426. %K A191669 nonn,tabl %O A191669 1,2 %A A191669 _Clark Kimberling_, Jun 11 2011