This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191670 #13 Oct 18 2017 05:06:51 %S A191670 1,2,4,3,6,8,5,9,11,12,7,13,15,17,16,10,18,21,23,22,20,14,25,29,31,30, %T A191670 27,24,19,34,39,42,41,37,33,28,26,46,53,57,55,50,45,38,32,35,62,71,77, %U A191670 74,67,61,51,43,36,47,83,95,103,99,90,82,69,58,49,40,63 %N A191670 Dispersion of A042968 (>1 and congruent to 1 or 2 or 3 mod 4), by antidiagonals. %C A191670 For a background discussion of dispersions, see A191426. %C A191670 ... %C A191670 Each of the sequences (4n, n>2), (4n+1, n>0), (3n+2, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The six sequences and dispersions are listed here: %C A191670 ... %C A191670 A191452=dispersion of A008586 (4k, k>=1) %C A191670 A191667=dispersion of A016813 (4k+1, k>=1) %C A191670 A191668=dispersion of A016825 (4k+2, k>=0) %C A191670 A191669=dispersion of A004767 (4k+3, k>=0) %C A191670 A191670=dispersion of A042968 (1 or 2 or 3 mod 4 and >=2) %C A191670 A191671=dispersion of A004772 (0 or 1 or 3 mod 4 and >=2) %C A191670 A191672=dispersion of A004773 (0 or 1 or 2 mod 4 and >=2) %C A191670 A191673=dispersion of A004773 (0 or 2 or 3 mod 4 and >=2) %C A191670 ... %C A191670 EXCEPT for at most 2 initial terms (so that column 1 always starts with 1): %C A191670 A191452 has 1st col A042968, all else A008486 %C A191670 A191667 has 1st col A004772, all else A016813 %C A191670 A191668 has 1st col A042965, all else A016825 %C A191670 A191669 has 1st col A004773, all else A004767 %C A191670 A191670 has 1st col A008486, all else A042968 %C A191670 A191671 has 1st col A016813, all else A004772 %C A191670 A191672 has 1st col A016825, all else A042965 %C A191670 A191673 has 1st col A004767, all else A004773 %C A191670 ... %C A191670 Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c mod m)", (as in the Mathematica program below): %C A191670 If f(n)=(n mod 3), then (a,b,c,a,b,c,a,b,c,...) is given by %C A191670 a*f(n+2)+b*f(n+1)+c*f(n), so that "(a or b or c mod m)" is given by %C A191670 a*f(n+2)+b*f(n+1)+c*f(n)+m*floor((n-1)/3)), for n>=1. %H A191670 Ivan Neretin, <a href="/A191670/b191670.txt">Table of n, a(n) for n = 1..5050</a> (first 100 antidiagonals, flattened) %e A191670 Northwest corner: %e A191670 1....2....3....5....7 %e A191670 4....6....9....13...18 %e A191670 8....11...15...21...29 %e A191670 12...17...23...31...42 %e A191670 16...22...30...41...55 %t A191670 (* Program generates the dispersion array T of the increasing sequence f[n] *) %t A191670 r = 40; r1 = 12; c = 40; c1 = 12; %t A191670 a = 2; b = 3; c2 = 5; m[n_] := If[Mod[n, 3] == 0, 1, 0]; %t A191670 f[n_] := a*m[n + 2] + b*m[n + 1] + c2*m[n] + 4*Floor[(n - 1)/3] %t A191670 Table[f[n], {n, 1, 30}] (* A042968 *) %t A191670 mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] %t A191670 rows = {NestList[f, 1, c]}; %t A191670 Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; %t A191670 t[i_, j_] := rows[[i, j]]; %t A191670 TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191670 *) %t A191670 Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191670 *) %Y A191670 Row 1: A155167, Row 2: A171861. %Y A191670 Cf. A008486, A042968, A191673, A191452. %K A191670 nonn,tabl %O A191670 1,2 %A A191670 _Clark Kimberling_, Jun 11 2011