This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191672 #10 Oct 18 2017 05:07:14 %S A191672 1,3,2,5,4,6,8,7,9,10,12,11,13,15,14,17,16,19,21,20,18,24,23,27,29,28, %T A191672 25,22,33,32,37,40,39,35,31,26,45,44,51,55,53,48,43,36,30,61,60,69,75, %U A191672 72,65,59,49,41,34,83,81,93,101,97,88,80,67,56,47,38 %N A191672 Dispersion of A042965 (>1 and congruent to 0 or 1 or 3 mod 4), by antidiagonals. %C A191672 For a background discussion of dispersions, see A191426. %C A191672 ... %C A191672 Each of the sequences (4n, n>2), (4n+1, n>0), (3n+2, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The six sequences and dispersions are listed here: %C A191672 ... %C A191672 A191452=dispersion of A008586 (4k, k>=1) %C A191672 A191667=dispersion of A016813 (4k+1, k>=1) %C A191672 A191668=dispersion of A016825 (4k+2, k>=0) %C A191672 A191669=dispersion of A004767 (4k+3, k>=0) %C A191672 A191670=dispersion of A042968 (1 or 2 or 3 mod 4 and >=2) %C A191672 A191671=dispersion of A004772 (0 or 1 or 3 mod 4 and >=2) %C A191672 A191672=dispersion of A004773 (0 or 1 or 2 mod 4 and >=2) %C A191672 A191673=dispersion of A004773 (0 or 2 or 3 mod 4 and >=2) %C A191672 ... %C A191672 EXCEPT for at most 2 initial terms (so that column 1 always starts with 1): %C A191672 A191452 has 1st col A042968, all else A008486 %C A191672 A191667 has 1st col A004772, all else A016813 %C A191672 A191668 has 1st col A042965, all else A016825 %C A191672 A191669 has 1st col A004773, all else A004767 %C A191672 A191670 has 1st col A008486, all else A042968 %C A191672 A191671 has 1st col A016813, all else A004772 %C A191672 A191672 has 1st col A016825, all else A042965 %C A191672 A191673 has 1st col A004767, all else A004773 %C A191672 ... %C A191672 Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c mod m)", (as in the Mathematica program below): %C A191672 If f(n)=(n mod 3), then (a,b,c,a,b,c,a,b,c,...) is given by %C A191672 a*f(n+2)+b*f(n+1)+c*f(n), so that "(a or b or c mod m)" is given by %C A191672 a*f(n+2)+b*f(n+1)+c*f(n)+m*floor((n-1)/3)), for n>=1. %H A191672 Ivan Neretin, <a href="/A191672/b191672.txt">Table of n, a(n) for n = 1..5050</a> (first 100 antidiagonals, flattened) %e A191672 Northwest corner: %e A191672 1....3...5....8....12 %e A191672 2....4...7....11...16 %e A191672 6....9...13...19...27 %e A191672 10...15..21...29...40 %e A191672 14...20..28...39...53 %t A191672 (* Program generates the dispersion array T of the increasing sequence f[n] *) %t A191672 r = 40; r1 = 12; c = 40; c1 = 12; %t A191672 a = 3; b = 4; c2 = 5; m[n_] := If[Mod[n, 3] == 0, 1, 0]; %t A191672 f[n_] := a*m[n + 2] + b*m[n + 1] + c2*m[n] + 4*Floor[(n - 1)/3] %t A191672 Table[f[n], {n, 1, 30}] (* A042965 *) %t A191672 mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] %t A191672 rows = {NestList[f, 1, c]}; %t A191672 Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; %t A191672 t[i_, j_] := rows[[i, j]]; %t A191672 TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191672 *) %t A191672 Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191672 *) %Y A191672 Cf. A016825, A042965, A191668, A191452. %K A191672 nonn,tabl %O A191672 1,2 %A A191672 _Clark Kimberling_, Jun 11 2011