A191673 Dispersion of A004773 (>1 and congruent to 0 or 1 or 2 mod 4), by antidiagonals.
1, 2, 3, 4, 5, 7, 6, 8, 10, 11, 9, 12, 14, 16, 15, 13, 17, 20, 22, 21, 19, 18, 24, 28, 30, 29, 26, 23, 25, 33, 38, 41, 40, 36, 32, 27, 34, 45, 52, 56, 54, 49, 44, 37, 31, 46, 61, 70, 76, 73, 66, 60, 50, 42, 35, 62, 82, 94, 102, 98, 89, 81, 68, 57, 48, 39, 84
Offset: 1
Examples
Northwest corner: 1....2....4....6....9 3....5....8....12...17 7....10...14...20...28 11...16...22...30...41 15...21...29...40...54
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050 (first 100 antidiagonals, flattened)
Programs
-
Mathematica
(* Program generates the dispersion array T of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a = 2; b = 4; c2 = 5; m[n_] := If[Mod[n, 3] == 0, 1, 0]; f[n_] := a*m[n + 2] + b*m[n + 1] + c2*m[n] + 4*Floor[(n - 1)/3] Table[f[n], {n, 1, 30}] (* A004773 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191673 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191673 *)
Comments