A191677 Numbers n such that 1^(n-1)+2^(n-1)+...+n^(n-1) == 0 (mod n).
1, 4, 8, 12, 16, 20, 24, 28, 32, 35, 36, 40, 44, 48, 52, 55, 56, 60, 64, 68, 72, 76, 77, 80, 84, 88, 92, 95, 96, 100, 104, 108, 112, 115, 116, 119, 120, 124, 128, 132, 136, 140, 143, 144, 148, 152, 155, 156, 160, 161, 164, 168, 172, 176, 180, 184, 187, 188, 192, 196, 200, 203, 204
Offset: 1
Keywords
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A121707 (n^3 divides Sum_{k
Programs
-
Mathematica
is191677[n_]:=Mod[Sum[PowerMod[k, n - 1, n], {k, 1, n - 1}], n] == 0; Select[Range[300], is191677]
-
PARI
select( is_A191677(n)=!sum(k=1,n-1,Mod(k,n)^(n-1)), [1..200]) \\ M. F. Hasler, Jul 22 2019
Comments