A191678 Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (0,2), (2,2).
1, 1, 5, 15, 62, 233, 937, 3729, 15121, 61492, 251942, 1036215, 4279754, 17731181, 73670725, 306823695, 1280574706, 5354602495, 22426876445, 94070238840, 395106054632, 1661489413472, 6994494531010, 29474635716345, 124319047552309, 524797934104312, 2217091297558466, 9373180869094923
Offset: 0
Keywords
Programs
-
Maple
P := (4*x^6+12*x^5-20*x^3+27*x^2+12*x-4)*A^3-(3*x^2+3*x-3)*A+1; Q := eval(P, A=A+1): series(RootOf(Q,A)+1, x=0, 30); # Mark van Hoeij, Apr 17 2013
-
PARI
/* same as in A092566 but use */ steps=[[1,0], [1,1], [0,2], [2,2]]; /* Joerg Arndt, Jun 30 2011 */
Formula
G.f.: A(x) where (4*x^6+12*x^5-20*x^3+27*x^2+12*x-4)*A(x)^3-(3*x^2+3*x-3)*A(x)+1 = 0. - Mark van Hoeij, Apr 17 2013