This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191679 #28 Oct 28 2019 04:20:51 %S A191679 2211,2261,2311,2463,2725,4257,6125,6611,7821,9841,9973,10303,10499, %T A191679 10631,10953,11987,12115,12179,12243,12309,12375,12637,12837,13497, %U A191679 13695,14169,15063,15395,16207,16483,16821,17605,17891,19017,20345,20487,21135,22539,22811,23219,23985 %N A191679 Potential magic constants of 9 X 9 magic squares composed of consecutive primes. %C A191679 For a 9 X 9 magic square composed of 81 consecutive primes, it is necessary that the sum of these primes is a multiple of 9. %C A191679 This sequence consists of integers equal the sum of 81 consecutive primes divides by 9. It is not known whether each such set of consecutive primes can be arranged into 9 X 9 magic square but it looks plausible. %H A191679 Stefano Tognon, <a href="http://digilander.libero.it/ice00/magic/prime/squares37.html#9">Squares from 37</a> (in Italian). %H A191679 Natalia Makarova, <a href="http://www.natalimak1.narod.ru/prime9.htm">Sequence of Magic Numbers MK 9th Order</a> (in Russian). %e A191679 a(1)=2211 for a square containing prime(12)..prime(92): %e A191679 [37 127 163 179 229 233 379 421 443 %e A191679 41 431 463 457 59 139 433 109 79 %e A191679 409 311 389 71 307 347 281 53 43 %e A191679 373 137 181 251 401 239 317 89 223 %e A191679 173 419 101 103 113 353 313 277 359 %e A191679 97 383 397 479 47 197 107 263 241 %e A191679 349 131 193 149 367 199 73 467 283 %e A191679 439 61 257 191 227 167 151 449 269 %e A191679 293 211 67 331 461 337 157 83 271] %e A191679 a(2)=2261 for a square containing prime(13)..prime(93): %e A191679 [41 379 281 467 349 257 229 199 59 %e A191679 313 223 127 337 131 101 479 107 443 %e A191679 409 71 331 79 137 263 347 271 353 %e A191679 211 307 487 149 251 293 181 113 269 %e A191679 191 419 109 439 173 233 103 397 197 %e A191679 97 283 193 317 433 457 241 157 83 %e A191679 461 139 239 359 373 179 67 401 43 %e A191679 89 277 73 53 367 167 463 389 383 %e A191679 449 163 421 61 47 311 151 227 431] %p A191679 s:= proc(n) option remember; %p A191679 `if` (n=1, add (ithprime(i), i=1..81), %p A191679 ithprime(n+80) -ithprime(n-1) +s(n-1)) %p A191679 end: %p A191679 a:= proc(n) option remember; local k, m; %p A191679 a(n-1); %p A191679 for k from 1+b(n-1) while irem (s(k), 9, 'm')<>0 do od; %p A191679 b(n):= k; m %p A191679 end: %p A191679 a(0):=0: b(0):=0: %p A191679 seq (a(n), n=1..50); %t A191679 Total[#]/9&/@Select[Partition[Prime[Range[500]],81,1],Divisible[ Total[ #],9]&] (* _Harvey P. Dale_, Jan 08 2014 *) %Y A191679 Cf. A073520, A173981, A176571, A177434, A188536, A189188. %K A191679 nonn %O A191679 1,1 %A A191679 _Natalia Makarova_, Jun 11 2011 %E A191679 Edited by _Max Alekseyev_, Jun 18 2011