A191685 Eighth diagonal a(n) = s(n,n-7) of the unsigned Stirling numbers of the first kind with n>7.
5040, 109584, 1172700, 8409500, 45995730, 206070150, 790943153, 2681453775, 8207628000, 23057159840, 60202693980, 147560703732, 342252511900, 756111184500, 1599718388730, 3256091103430, 6400590336096, 12191224980000, 22563937825000, 40681506808800
Offset: 8
Examples
c=1; a(n+1) = binomial(n+1,2) c=2; a(n+1) = binomial(n+1,3)*(2+3*n)/4 c=3; a(n+1) = binomial(n+1,4)*(n+n^2)/2 c=4; a(n+1) = binomial(n+1,5)*(-8-10*n+15*n^2 +15*n^3)/48 c=5; a(n+1) = binomial(n+1,6)*(-6*n-7*n^2+2*n^3+ 3*n^4)/16 c=6; a(n+1) = binomial(n+1,7)*(96+140*n-224*n^2-315*n^3+63*n^5)/576 c=7; a(n+1) = binomial(n+1,8)*(80*n+114*n^2-23*n^3-75*n^4-9*n^5+9*n^6)/144 c=8; a(n+1) = binomial(n+1,9)*(-1152-1936*n+2820*n^2+ 5320*n^3+735*n^4-1575*n^5-315*n^6+135*n^7)/3840 c=9; a(n+1) = binomial(n+1,10)*(-1008*n-1676*n^2 +100*n^3+1295*n^4+392*n^5-210*n^6-60*n^7 +15*n^8)/768
References
- K. Seidel, Variation der Binomialkoeffizienten, Bild
- der Wissenschaft, 6 (1980), pp. 127-128.
Links
- T. D. Noe, Table of n, a(n) for n = 8..1000
Crossrefs
Programs
-
Maple
I: programs generate the sequence: with(combinat): c:=7; a:= proc(n) a(n):=abs(stirling1(n,n-c)); end: seq(a(n), n=c+1..28); for n from 7 to 27 do a(n+1) := binomial(n+1,8)*(80*n+ 114*n^2- 23*n^3- 75*n^4- 9*n^5+ 9*n^6)/144 end do: seq(a(n),n=8..28); II: program generates explicit formulas for a(n+1) = s(n+1,n+1-c): k[1,0]:=1: v:=1: for c from 2 to 10 do c1:=c-1: c2:=c-2: p0:=0: for j from 0 to c2 do p0:=p0+k[c1,j]*m^j: end do: f:=expand(2*c*(m+1)*p0/v): p1:=0: p2:=0: for j from 0 to c1 do p1:=p1+k[c,j]*(m+1)^j: p2:=p2+k[c,j]*m^j: end do: g:=collect((m+2)*p1-(m-c1)*p2-f,m): kh[0]:=rem(g,m,m): Mk:=[kh[0]]: Mv:=[k[c,0]]: for j from 1 to c1 do kh[j]:=coeff(g,m^j): Mk:=[op(Mk),kh[j]]: Mv:=[k[c,j],op(Mv)]: end do: sol:=solve(Mk,Mv): v:=1: for j from 1 to c do k[c,c-j]:=eval(k[c,c-j],sol[1,j]): nen[j]:=denom(k[c,c-j]): v:=ilcm(v,nen[j]): end do: for j from 0 to c1 do k[c,j]:=k[c,j]*v: printf("%8d",k[c,j]): end do: p3:=0: for j from 0 to c1 do p3:=p3+k[c,j]*n^j: end do: s[n+1,n+1-c]:=binomial(n+1,c+1)*(c+1)*p3/(2^c*k[c,c1]): end do: for c from 2 to 10 do print("%a\n",s[n+1,n+1-c]): end do:
Formula
a(n+1) = A130534(T(n,n-7)) = s(n+1,n+1-7)
a(n+1) = binomial(n+1,8)*(80*n+114*n^2-23*n^3-75*n^4-9*n^5+9*n^6)/144
Comments