A191687 Table T(n,k) = ceiling((1/2)*((k+1)^n+(1+(-1)^k)/2)) read by antidiagonals.
1, 1, 1, 1, 2, 2, 1, 1, 4, 5, 2, 1, 1, 8, 14, 8, 3, 1, 1, 16, 41, 32, 13, 3, 1, 1, 32, 122, 128, 63, 18, 4, 1, 1, 64, 365, 512, 313, 108, 25, 4, 1, 1, 128, 1094, 2048, 1563, 648, 172, 32, 5, 1
Offset: 1
Examples
Top left corner: 1, 1, 1, 1, 1,... 1, 1, 2, 2, 3,... 1, 2, 5, 8, 13,... 1, 4,14, 32, 63,... 1, 8,41,128,313,... T(2,4)=13: there are 13 compositions of even natural numbers into 2 parts <=4 0: (0,0); 2: (0,2), (2,0), (1,1); 4: (0,4), (4,0), (1,3), (3,1), (2,2); 6: (2,4), (4,2), (3,3); 8: (4,4).
Links
Crossrefs
Programs
-
Mathematica
Table[Table[Ceiling[1/2*((k+1)^n+(1+(-1)^k)/2)],{n,0,9},{k,0,9}]]
Comments