cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191689 Decimal expansion of fractal dimension of boundary of Lévy dragon.

This page as a plain text file.
%I A191689 #17 Apr 23 2021 05:17:17
%S A191689 1,9,3,4,0,0,7,1,8,2,9,8,8,2,9,0,9,7,8,7,3,3,1,2,3,3,6,2,1,9,3,2,5,1,
%T A191689 8,2,7,4,1,1,8,5,6,3,8,7,1,4,5,8,6,0,2,2,3,7,4,9,4,6,9,5,6,7,0,0,4,1,
%U A191689 1,6,3,2,2,9,9,5,5,4,5,1,5,2,0,8,8,1,8
%N A191689 Decimal expansion of fractal dimension of boundary of Lévy dragon.
%C A191689 The Lévy dragon was named after the French mathematician Paul Lévy (1886-1971). - _Amiram Eldar_, Apr 23 2021
%H A191689 Scott Bailey, Theodore Kim and Robert S. Strichartz, <a href="http://www.jstor.org/stable/3072395">Inside the Lévy dragon</a>, Amer. Math. Monthly, Vol. 109, No. 8 (2002), pp. 689-703.
%H A191689 Paul Duvall and James Keesling, <a href="http://dx.doi.org/10.1155/S0161171297000872">The dimension of the boundary of the Lévy dragon</a>, Int. J. Math. and Math. Sci., Vol. 20, No. 4 (1997), pp. 627-632.
%H A191689 Paul Duvall and James Keesling, <a href="http://dx.doi.org/10.1090/conm/246">The Hausdorff dimension of the boundary of the Lévy dragon</a>, in: M. Barge and K. Kuperberg (eds.), Geometry and Topology in Dynamics, AMS Contemporary Mathematics, Vol. 246 (1999), pp. 87-97; <a href="https://arxiv.org/abs/math/9907145">arXiv preprint</a>, arXiv:math/9907145 [math.DS], 1999.
%H A191689 Larry Riddle, <a href="https://larryriddle.agnesscott.org/ifs/levy/levy.htm">Lévy Dragon</a>, Classic Iterated Function Systems.
%H A191689 Robert S. Strichartz and Yang Wang, <a href="https://www.jstor.org/stable/24900135">Geometry of Self-Affine Tiles I</a>, Indiana University Mathematics Journal, Vol. 48, No. 1 (1999), pp. 1-23; <a href="https://www.math.hkust.edu.hk/~yangwang/Reprints/boundaryI.pdf">alternative link</a>.
%F A191689 Equals 2*log_2(x), where x is the largest real root of x^9 - 3*x^8 + 3*x^7 - 3*x^6 + 2*x^5 + 4*x^4 - 8*x^3 + 8*x^2 - 16*x + 8 = 0. - _Amiram Eldar_, Apr 23 2021
%e A191689 1.934007182988290978...
%t A191689 RealDigits[2*Log2[x /. FindRoot[x^9 - 3*x^8 + 3*x^7 - 3*x^6 + 2*x^5 + 4*x^4 - 8*x^3 + 8*x^2 - 16*x + 8, {x, 2}, WorkingPrecision -> 100]]][[1]] (* _Amiram Eldar_, Apr 23 2021 *)
%K A191689 nonn,cons
%O A191689 1,2
%A A191689 _N. J. A. Sloane_, Jun 11 2011
%E A191689 More terms from _Amiram Eldar_, Apr 23 2021