cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191710 Dispersion of A032763, (numbers >1 and congruent to 0, 1, 2, or 4 mod 5), by antidiagonals.

This page as a plain text file.
%I A191710 #7 Oct 17 2017 20:50:25
%S A191710 1,2,3,4,5,8,6,7,11,13,9,10,15,17,18,12,14,20,22,24,23,16,19,26,29,31,
%T A191710 30,28,21,25,34,37,40,39,36,33,27,32,44,47,51,50,46,42,38,35,41,56,60,
%U A191710 65,64,59,54,49,43,45,52,71,76,82,81,75,69,62,55,48,57
%N A191710 Dispersion of A032763, (numbers >1 and congruent to 0, 1, 2, or 4 mod 5), by antidiagonals.
%C A191710 For a background discussion of dispersions and their fractal sequences, see A191426.  For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
%C A191710 ...
%C A191710 Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion.  Each complement (beginning with its first term >1) also generates a dispersion.  The ten sequences and dispersions are listed here:
%C A191710 ...
%C A191710 A191702=dispersion of A008587 (5k, k>=1)
%C A191710 A191703=dispersion of A016861 (5k+1, k>=1)
%C A191710 A191704=dispersion of A016873 (5k+2, k>=0)
%C A191710 A191705=dispersion of A016885 (5k+3, k>=0)
%C A191710 A191706=dispersion of A016897 (5k+4, k>=0)
%C A191710 A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
%C A191710 A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
%C A191710 A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
%C A191710 A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
%C A191710 A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
%C A191710 ...
%C A191710 EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
%C A191710 A191702 has 1st col A047201, all else A008587
%C A191710 A191703 has 1st col A047202, all else A016861
%C A191710 A191704 has 1st col A047207, all else A016873
%C A191710 A191705 has 1st col A032763, all else A016885
%C A191710 A191706 has 1st col A001068, all else A016897
%C A191710 A191707 has 1st col A008587, all else A047201
%C A191710 A191708 has 1st col A042968, all else A047203
%C A191710 A191709 has 1st col A042968, all else A047207
%C A191710 A191710 has 1st col A042968, all else A032763
%C A191710 A191711 has 1st col A042968, all else A001068
%C A191710 ...
%C A191710 Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
%C A191710 ...
%C A191710 If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
%C A191710 a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).
%H A191710 Ivan Neretin, <a href="/A191710/b191710.txt">Table of n, a(n) for n = 1..5050</a> (first 100 antidiagonals, flattened)
%e A191710 Northwest corner:
%e A191710 1....2....4....6....9
%e A191710 3....5....7....10...14
%e A191710 8....11...15...20...26
%e A191710 13...17...22...29...37
%e A191710 18...24...31...40...51
%e A191710 23...30...39...50...64
%t A191710 (* Program generates the dispersion array T of the increasing sequence f[n] *)
%t A191710 r = 40; r1 = 12;  c = 40; c1 = 12;
%t A191710 a=2; b=4; c2=5; d=6; m[n_]:=If[Mod[n,4]==0,1,0];
%t A191710 f[n_]:=a*m[n+3]+b*m[n+2]+c2*m[n+1]+d*m[n]+5*Floor[(n-1)/4]
%t A191710 Table[f[n], {n, 1, 30}]  (* A032763 *)
%t A191710 mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
%t A191710 rows = {NestList[f, 1, c]};
%t A191710 Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
%t A191710 t[i_, j_] := rows[[i, j]];
%t A191710 TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191710 *)
%t A191710 Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191710  *)
%Y A191710 Cf. A032763, A016885, A191705, A191426.
%K A191710 nonn,tabl
%O A191710 1,2
%A A191710 _Clark Kimberling_, Jun 12 2011