A191716 a(n,k) equals (1/n!) multiplied by the count of permutations with cycle length k in all products u v u^-1 v^-1 over all permutations u and v of length n.
1, 0, 2, 3, 0, 3, 0, 19, 0, 5, 40, 0, 73, 0, 7, 0, 492, 0, 217, 0, 11, 1260, 0, 3225, 0, 540, 0, 15, 0, 24096, 0, 14968, 0, 1234, 0, 22, 72576, 0, 232156, 0, 55594, 0, 2524, 0, 30, 0, 1922148, 0, 1524823, 0, 176800, 0, 4987, 0, 42, 6652800, 0, 24999984, 0, 7758160, 0, 496680, 0, 9120, 0, 56, 0, 227963280, 0, 216975032, 0, 32769481, 0, 1277331, 0, 16399, 0, 77
Offset: 1
Examples
1; 0, 2; 3, 0, 3; 0, 19, 0, 5; 40, 0, 73, 0, 7; 0, 492, 0, 217, 0, 11; 1260, 0, 3225, 0, 540, 0, 15; 0, 24096, 0, 14968, 0, 1234, 0, 22;
Links
- R. Stanley, Hook Lengths and Contents slides 26 & 27
Crossrefs
Cf. A191714
Programs
-
Mathematica
(*slow:*) Table[Rest@CoefficientList[Apply[Plus,Flatten[Outer[ q^Length[ ToCycles[#1[[#2]][[InversePermutation[#1]]][[InversePermutation[#2]]]]] &, Permutations[w], Permutations[w], 1]]],q]/w!,{w,4}]//Expand; (*fast:*) content[(p_)?PartitionQ]:= Block[{le= Max[p], ferr =(PadLeft[1+ 0*Range[#1], Max[p]]&) /@ p}, DeleteCases[ MapIndexed[-le+ Range[le,1,-1]- #1- Tr[#2]&, 0*ferr]*ferr,0,-1]+ le]; Table[Rest@ CoefficientList[ Apply[Plus, Apply[Times, q + Flatten[content[#]]] & /@ Partitions[ k ]] , q], {k, 12}]
Comments