This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191724 #8 Oct 11 2017 16:27:19 %S A191724 1,3,2,8,5,4,20,13,10,6,50,33,25,15,7,125,83,63,38,18,9,313,208,158, %T A191724 95,45,23,11,783,520,395,238,113,58,28,12,1958,1300,988,595,283,145, %U A191724 70,30,14,4895,3250,2470,1488,708,363,175,75,35,16,12238,8125,6175 %N A191724 Dispersion of A047218, (numbers >1 and congruent to 0 or 3 mod 5), by antidiagonals. %C A191724 For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702. %C A191724 ... %C A191724 Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here: %C A191724 ... %C A191724 A191722=dispersion of A008851 (0, 1 mod 5 and >1) %C A191724 A191723=dispersion of A047215 (0, 2 mod 5 and >1) %C A191724 A191724=dispersion of A047218 (0, 3 mod 5 and >1) %C A191724 A191725=dispersion of A047208 (0, 4 mod 5 and >1) %C A191724 A191726=dispersion of A047216 (1, 2 mod 5 and >1) %C A191724 A191727=dispersion of A047219 (1, 3 mod 5 and >1) %C A191724 A191728=dispersion of A047209 (1, 4 mod 5 and >1) %C A191724 A191729=dispersion of A047221 (2, 3 mod 5 and >1) %C A191724 A191730=dispersion of A047211 (2, 4 mod 5 and >1) %C A191724 A191731=dispersion of A047204 (3, 4 mod 5 and >1) %C A191724 ... %C A191724 A191732=dispersion of A047202 (2,3,4 mod 5 and >1) %C A191724 A191733=dispersion of A047206 (1,3,4 mod 5 and >1) %C A191724 A191734=dispersion of A032793 (1,2,4 mod 5 and >1) %C A191724 A191735=dispersion of A047223 (1,2,3 mod 5 and >1) %C A191724 A191736=dispersion of A047205 (0,3,4 mod 5 and >1) %C A191724 A191737=dispersion of A047212 (0,2,4 mod 5 and >1) %C A191724 A191738=dispersion of A047222 (0,2,3 mod 5 and >1) %C A191724 A191739=dispersion of A008854 (0,1,4 mod 5 and >1) %C A191724 A191740=dispersion of A047220 (0,1,3 mod 5 and >1) %C A191724 A191741=dispersion of A047217 (0,1,2 mod 5 and >1) %C A191724 ... %C A191724 For further information about these 20 dispersions, see A191722. %C A191724 ... %C A191724 Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs. %H A191724 Ivan Neretin, <a href="/A191724/b191724.txt">Table of n, a(n) for n = 1..5050</a> %e A191724 Northwest corner: %e A191724 1....3....8....20....50 %e A191724 2....5....13...33....83 %e A191724 4....10...25...63....158 %e A191724 6....15...38...95....238 %e A191724 7....18...45...113...283 %e A191724 9....23...58...145...363 %t A191724 (* Program generates the dispersion array t of the increasing sequence f[n] *) %t A191724 r = 40; r1 = 12; c = 40; c1 = 12; %t A191724 a=3; b=5; m[n_]:=If[Mod[n,2]==0,1,0]; %t A191724 f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2] %t A191724 Table[f[n], {n, 1, 30}] (* A047218 *) %t A191724 mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] %t A191724 rows = {NestList[f, 1, c]}; %t A191724 Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; %t A191724 t[i_, j_] := rows[[i, j]]; %t A191724 TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191724 *) %t A191724 Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191724 *) %Y A191724 Cf. A032793, A047218, A191734, A191722, A191426. %K A191724 nonn,tabl %O A191724 1,2 %A A191724 _Clark Kimberling_, Jun 13 2011