cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191725 Dispersion of A047208, (numbers >1 and congruent to 0 or 4 mod 5), by antidiagonals.

This page as a plain text file.
%I A191725 #11 Oct 11 2017 16:34:08
%S A191725 1,4,2,10,5,3,25,14,9,6,64,35,24,15,7,160,89,60,39,19,8,400,224,150,
%T A191725 99,49,20,11,1000,560,375,249,124,50,29,12,2500,1400,939,624,310,125,
%U A191725 74,30,13,6250,3500,2349,1560,775,314,185,75,34,16,15625,8750,5874
%N A191725 Dispersion of A047208, (numbers >1 and congruent to 0 or 4 mod 5), by antidiagonals.
%C A191725 For a background discussion of dispersions and their fractal sequences, see A191426.  For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
%C A191725 ...
%C A191725 Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}.  Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5.  There are 10 sequences in S, each matched by a (nearly) complementary sequence in T.  Each of the 20 sequences generates a dispersion, as listed here:
%C A191725 ...
%C A191725 A191722=dispersion of A008851 (0, 1 mod 5 and >1)
%C A191725 A191723=dispersion of A047215 (0, 2 mod 5 and >1)
%C A191725 A191724=dispersion of A047218 (0, 3 mod 5 and >1)
%C A191725 A191725=dispersion of A047208 (0, 4 mod 5 and >1)
%C A191725 A191726=dispersion of A047216 (1, 2 mod 5 and >1)
%C A191725 A191727=dispersion of A047219 (1, 3 mod 5 and >1)
%C A191725 A191728=dispersion of A047209 (1, 4 mod 5 and >1)
%C A191725 A191729=dispersion of A047221 (2, 3 mod 5 and >1)
%C A191725 A191730=dispersion of A047211 (2, 4 mod 5 and >1)
%C A191725 A191731=dispersion of A047204 (3, 4 mod 5 and >1)
%C A191725 ...
%C A191725 A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
%C A191725 A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
%C A191725 A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
%C A191725 A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
%C A191725 A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
%C A191725 A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
%C A191725 A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
%C A191725 A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
%C A191725 A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
%C A191725 A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
%C A191725 ...
%C A191725 For further information about these 20 dispersions, see A191722.
%C A191725 ...
%C A191725 Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.
%H A191725 Ivan Neretin, <a href="/A191725/b191725.txt">Table of n, a(n) for n = 1..5050</a>
%e A191725 Northwest corner:
%e A191725 1....4....10....25....64
%e A191725 2....5....14....35...89
%e A191725 3....9....24...60...150
%e A191725 6....15...39...99...249
%e A191725 7....19...49...124..310
%e A191725 8....20...50...125...314
%t A191725 (* Program generates the dispersion array t of the increasing sequence f[n] *)
%t A191725 r = 40; r1 = 12;  c = 40; c1 = 12;
%t A191725 a=4; b=5; m[n_]:=If[Mod[n,2]==0,1,0];
%t A191725 f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2]
%t A191725 Table[f[n], {n, 1, 30}]  (* A047208 *)
%t A191725 mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
%t A191725 rows = {NestList[f, 1, c]};
%t A191725 Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
%t A191725 t[i_, j_] := rows[[i, j]];
%t A191725 TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191725 *)
%t A191725 Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191725  *)
%Y A191725 Cf. A047223, A047208, A191735, A191722, A191426.
%K A191725 nonn,tabl
%O A191725 1,2
%A A191725 _Clark Kimberling_, Jun 13 2011