A191726 Dispersion of A047216, (numbers >1 and congruent to 1 or 2 mod 5), by antidiagonals.
1, 2, 3, 6, 7, 4, 16, 17, 11, 5, 41, 42, 27, 12, 8, 102, 106, 67, 31, 21, 9, 256, 266, 167, 77, 52, 22, 10, 641, 666, 417, 192, 131, 56, 26, 13, 1602, 1666, 1042, 481, 327, 141, 66, 32, 14, 4006, 4166, 2606, 1202, 817, 352, 166, 81, 36, 15, 10016, 10416
Offset: 1
Examples
Northwest corner: 1....2....6....16....41 3....7....17...42....106 4....11...27...67....167 5....12...31...77....192 8....21...52...131...327 9....22...56...141...352
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050
Programs
-
Mathematica
(* Program generates the dispersion array t of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=2; b=6; m[n_]:=If[Mod[n,2]==0,1,0]; f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2] Table[f[n], {n, 1, 30}] (* A047216 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191726 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191726 *)
Comments