A191727 Dispersion of A047219, (numbers >1 and congruent to 1 or 3 mod 5), by antidiagonals.
1, 3, 2, 8, 6, 4, 21, 16, 11, 5, 53, 41, 28, 13, 7, 133, 103, 71, 33, 18, 9, 333, 258, 178, 83, 46, 23, 10, 833, 646, 446, 208, 116, 58, 26, 12, 2083, 1616, 1116, 521, 291, 146, 66, 31, 14, 5208, 4041, 2791, 1303, 728, 366, 166, 78, 36, 15, 13021, 10103
Offset: 1
Examples
Northwest corner: 1....3....8....21....53 2....6....16...41....103 4....11...28...71....178 5....13...33...83....208 7....18...46...116...291 9....23...58...146...366
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050 (first 100 antidiagonals, flattened)
Programs
-
Mathematica
(* Program generates the dispersion array t of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=3; b=6; m[n_]:=If[Mod[n,2]==0,1,0]; f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2] Table[f[n], {n, 1, 30}] (* A047219 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191727 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191727 *)
Comments