A191729 Dispersion of A047221, (numbers >1 and congruent to 2 or 3 mod 5), by antidiagonals.
1, 2, 4, 3, 8, 5, 7, 18, 12, 6, 17, 43, 28, 13, 9, 42, 107, 68, 32, 22, 10, 103, 267, 168, 78, 53, 23, 11, 257, 667, 418, 193, 132, 57, 27, 14, 642, 1667, 1043, 482, 328, 142, 67, 33, 15, 1603, 4167, 2607, 1203, 818, 353, 167, 82, 37, 16, 4007, 10417, 6517
Offset: 1
Examples
Northwest corner: 1....2....3....7.....17 4....8....18...43....107 5....12...28...68....168 6....13...32...78....193 9....22...53...132...328 10...23...57...142...353
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050
Programs
-
Mathematica
(* Program generates the dispersion array t of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=2; b=3; m[n_]:=If[Mod[n,2]==0,1,0]; f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2] Table[f[n], {n, 1, 30}] (* A047221 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191729 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191729 *)
Comments