A191731 Dispersion of A047204, (numbers >1 and congruent to 3 or 4 mod 5), by antidiagonals.
1, 3, 2, 8, 4, 5, 19, 9, 13, 6, 48, 23, 33, 14, 7, 119, 58, 83, 34, 18, 10, 298, 144, 208, 84, 44, 24, 11, 744, 359, 519, 209, 109, 59, 28, 12, 1859, 898, 1298, 523, 273, 148, 69, 29, 15, 4648, 2244, 3244, 1308, 683, 369, 173, 73, 38, 16, 11619, 5609, 8109
Offset: 1
Examples
Northwest corner: 1....3....8.....19.....48 2....4....9....23....58 5....13...33...83....208 6....14...34...84....209 7....18...44...109...273 10...24...59...148...369
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050
Programs
-
Mathematica
(* Program generates the dispersion array t of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=3; b=4; m[n_]:=If[Mod[n,2]==0,1,0]; f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2] Table[f[n], {n, 1, 30}] (* A047204 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191731 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191731 *)
Comments