This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191732 #11 Oct 11 2017 18:13:33 %S A191732 1,2,5,3,8,6,4,13,9,10,7,22,14,17,11,12,37,23,28,18,15,19,62,38,47,29, %T A191732 24,16,32,103,63,78,48,39,27,20,53,172,104,129,79,64,44,33,21,88,287, %U A191732 173,214,132,107,73,54,34,25,147,478,288,357,219,178,122,89 %N A191732 Dispersion of A047202, (numbers >1 and congruent to 2 or 3 or 4 mod 5), by antidiagonals. %C A191732 For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702. %C A191732 ... %C A191732 Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here: %C A191732 ... %C A191732 A191722=dispersion of A008851 (0, 1 mod 5 and >1) %C A191732 A191723=dispersion of A047215 (0, 2 mod 5 and >1) %C A191732 A191724=dispersion of A047218 (0, 3 mod 5 and >1) %C A191732 A191725=dispersion of A047208 (0, 4 mod 5 and >1) %C A191732 A191726=dispersion of A047216 (1, 2 mod 5 and >1) %C A191732 A191727=dispersion of A047219 (1, 3 mod 5 and >1) %C A191732 A191728=dispersion of A047209 (1, 4 mod 5 and >1) %C A191732 A191729=dispersion of A047221 (2, 3 mod 5 and >1) %C A191732 A191730=dispersion of A047211 (2, 4 mod 5 and >1) %C A191732 A191731=dispersion of A047204 (3, 4 mod 5 and >1) %C A191732 ... %C A191732 A191732=dispersion of A047202 (2,3,4 mod 5 and >1) %C A191732 A191733=dispersion of A047206 (1,3,4 mod 5 and >1) %C A191732 A191734=dispersion of A032793 (1,2,4 mod 5 and >1) %C A191732 A191735=dispersion of A047223 (1,2,3 mod 5 and >1) %C A191732 A191736=dispersion of A047205 (0,3,4 mod 5 and >1) %C A191732 A191737=dispersion of A047212 (0,2,4 mod 5 and >1) %C A191732 A191738=dispersion of A047222 (0,2,3 mod 5 and >1) %C A191732 A191739=dispersion of A008854 (0,1,4 mod 5 and >1) %C A191732 A191740=dispersion of A047220 (0,1,3 mod 5 and >1) %C A191732 A191741=dispersion of A047217 (0,1,2 mod 5 and >1) %C A191732 ... %C A191732 For further information about these 20 dispersions, see A191722. %C A191732 ... %C A191732 Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs. %H A191732 Ivan Neretin, <a href="/A191732/b191732.txt">Table of n, a(n) for n = 1..5050</a> %e A191732 Northwest corner: %e A191732 1....2....3....4....7 %e A191732 5....8....13...22...37 %e A191732 6....9....14...23...38 %e A191732 10...17...28...47...78 %e A191732 11...18...29...48...79 %e A191732 15...24...39...64...107 %t A191732 (* Program generates the dispersion array t of the increasing sequence f[n] *) %t A191732 r = 40; r1 = 12; c = 40; c1 = 12; %t A191732 a=2; b=3; c2=4; m[n_]:=If[Mod[n,3]==0,1,0]; %t A191732 f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3] %t A191732 Table[f[n], {n, 1, 30}] (* A047202 *) %t A191732 mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] %t A191732 rows = {NestList[f, 1, c]}; %t A191732 Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; %t A191732 t[i_, j_] := rows[[i, j]]; %t A191732 TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191732 *) %t A191732 Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191732 *) %Y A191732 Cf. A008851, A047202, A191722, A191426. %K A191732 nonn,tabl %O A191732 1,2 %A A191732 _Clark Kimberling_, Jun 14 2011