This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A191733 #7 Oct 11 2017 16:48:27 %S A191733 1,3,2,6,4,5,11,8,9,7,19,14,16,13,10,33,24,28,23,18,12,56,41,48,39,31, %T A191733 21,15,94,69,81,66,53,36,26,17,158,116,136,111,89,61,44,29,20,264,194, %U A191733 228,186,149,103,74,49,34,22,441,324,381,311,249,173,124,83 %N A191733 Dispersion of A047206, (numbers >1 and congruent to 1 or 3 or 4 mod 5), by antidiagonals. %C A191733 For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702. %C A191733 ... %C A191733 Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here: %C A191733 ... %C A191733 A191722=dispersion of A008851 (0, 1 mod 5 and >1) %C A191733 A191723=dispersion of A047215 (0, 2 mod 5 and >1) %C A191733 A191724=dispersion of A047218 (0, 3 mod 5 and >1) %C A191733 A191725=dispersion of A047208 (0, 4 mod 5 and >1) %C A191733 A191726=dispersion of A047216 (1, 2 mod 5 and >1) %C A191733 A191727=dispersion of A047219 (1, 3 mod 5 and >1) %C A191733 A191728=dispersion of A047209 (1, 4 mod 5 and >1) %C A191733 A191729=dispersion of A047221 (2, 3 mod 5 and >1) %C A191733 A191730=dispersion of A047211 (2, 4 mod 5 and >1) %C A191733 A191731=dispersion of A047204 (3, 4 mod 5 and >1) %C A191733 ... %C A191733 A191732=dispersion of A047202 (2,3,4 mod 5 and >1) %C A191733 A191733=dispersion of A047206 (1,3,4 mod 5 and >1) %C A191733 A191734=dispersion of A032793 (1,2,4 mod 5 and >1) %C A191733 A191735=dispersion of A047223 (1,2,3 mod 5 and >1) %C A191733 A191736=dispersion of A047205 (0,3,4 mod 5 and >1) %C A191733 A191737=dispersion of A047212 (0,2,4 mod 5 and >1) %C A191733 A191738=dispersion of A047222 (0,2,3 mod 5 and >1) %C A191733 A191739=dispersion of A008854 (0,1,4 mod 5 and >1) %C A191733 A191740=dispersion of A047220 (0,1,3 mod 5 and >1) %C A191733 A191741=dispersion of A047217 (0,1,2 mod 5 and >1) %C A191733 ... %C A191733 For further information about these 20 dispersions, see A191722. %C A191733 ... %C A191733 Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs. %H A191733 Ivan Neretin, <a href="/A191733/b191733.txt">Table of n, a(n) for n = 1..5050</a> %e A191733 Northwest corner: %e A191733 1....3....6....11...19 %e A191733 2....4....8....14...24 %e A191733 5....9....16...28...48 %e A191733 7....13...23...39...66 %e A191733 10...18...31...53...89 %e A191733 12...21...36...61...103 %t A191733 (* Program generates the dispersion array t of the increasing sequence f[n] *) %t A191733 r = 40; r1 = 12; c = 40; c1 = 12; %t A191733 a=3; b=4; c2=6; m[n_]:=If[Mod[n,3]==0,1,0]; %t A191733 f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3] %t A191733 Table[f[n], {n, 1, 30}] (* A047206 *) %t A191733 mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] %t A191733 rows = {NestList[f, 1, c]}; %t A191733 Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; %t A191733 t[i_, j_] := rows[[i, j]]; %t A191733 TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191733 *) %t A191733 Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191733 *) %Y A191733 Cf. A047215, A047206, A191722, , A191723, A191426. %K A191733 nonn,tabl %O A191733 1,2 %A A191733 _Clark Kimberling_, Jun 14 2011