A191734 Dispersion of A032793, (numbers >1 and congruent to 1 or 2 or 4 mod 5), by antidiagonals.
1, 2, 3, 4, 6, 5, 7, 11, 9, 8, 12, 19, 16, 14, 10, 21, 32, 27, 24, 17, 13, 36, 54, 46, 41, 29, 22, 15, 61, 91, 77, 69, 49, 37, 26, 18, 102, 152, 129, 116, 82, 62, 44, 31, 20, 171, 254, 216, 194, 137, 104, 74, 52, 34, 23, 286, 424, 361, 324, 229, 174, 124, 87
Offset: 1
Examples
Northwest corner: 1....2....4....7...12 3....6....11...19...32 5....9....16...27...46 8....14...24...41...69 10...17...29...49...82 13...22...37...62...104
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050
Programs
-
Mathematica
(* Program generates the dispersion array t of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=2; b=4; c2=6; m[n_]:=If[Mod[n,3]==0,1,0]; f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3] Table[f[n], {n, 1, 30}] (* A032793 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191734 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191734 *)
Comments