A191735 Dispersion of A047223, (numbers >1 and congruent to 1 or 2 or 3 mod 5), by antidiagonals.
1, 2, 4, 3, 7, 5, 6, 12, 8, 9, 11, 21, 13, 16, 10, 18, 36, 22, 27, 17, 14, 31, 61, 37, 46, 28, 23, 15, 52, 102, 62, 77, 47, 38, 26, 19, 87, 171, 103, 128, 78, 63, 43, 32, 20, 146, 286, 172, 213, 131, 106, 72, 53, 33, 24, 243, 477, 287, 356, 218, 177, 121, 88
Offset: 1
Examples
Northwest corner: 1....2....3....6....11 4....7....12...21...36 5....8....13...22...37 9....16...27...46...77 10...17...28...47...78 14...23...38...63...106
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050 (first 100 antidiagonals, flattened)
Programs
-
Mathematica
(* Program generates the dispersion array t of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=2; b=3; c2=6; m[n_]:=If[Mod[n,3]==0,1,0]; f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3] Table[f[n], {n, 1, 30}] (* A047223 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191735 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191735 *)
Comments