A191739 Dispersion of A008854, (numbers >1 and congruent to 0 or 1 or 4 mod 5), by antidiagonals.
1, 4, 2, 9, 5, 3, 16, 10, 6, 7, 29, 19, 11, 14, 8, 50, 34, 20, 25, 15, 12, 85, 59, 35, 44, 26, 21, 13, 144, 100, 60, 75, 45, 36, 24, 17, 241, 169, 101, 126, 76, 61, 41, 30, 18, 404, 284, 170, 211, 129, 104, 70, 51, 31, 22, 675, 475, 285, 354, 216, 175, 119
Offset: 1
Examples
Northwest corner: 1....4....9....16...29 2....5....10...19...34 3....6....11...20...35 7....14...25...44...75 8....15...26...45...76 12...21...36...61...104
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050 (first 100 antidiagonals, flattened)
Programs
-
Mathematica
(* Program generates the dispersion array t of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=4; b=5; c2=6; m[n_]:=If[Mod[n,3]==0,1,0]; f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3] Table[f[n], {n, 1, 30}] (* A008854 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191739 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191739 *)
Comments