A191740 Dispersion of A047220, (numbers >1 and congruent to 0 or 1 or 3 mod 5), by antidiagonals.
1, 3, 2, 6, 5, 4, 11, 10, 8, 7, 20, 18, 15, 13, 9, 35, 31, 26, 23, 16, 12, 60, 53, 45, 40, 28, 21, 14, 101, 90, 76, 68, 48, 36, 25, 17, 170, 151, 128, 115, 81, 61, 43, 30, 19, 285, 253, 215, 193, 136, 103, 73, 51, 33, 22, 476, 423, 360, 323, 228, 173, 123
Offset: 1
Examples
Northwest corner: 1....3....6....11...20 2....5....10...18...31 4....8....15...26...45 7....13...23...40...68 9....16...28...48...81 12...21...36...61...103
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050 (first 100 antidiagonals, flattened)
Programs
-
Mathematica
(* Program generates the dispersion array t of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=3; b=5; c2=6; m[n_]:=If[Mod[n,3]==0,1,0]; f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3] Table[f[n], {n, 1, 30}] (* A047220 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191740 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191740 *)
Comments