cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191774 Lim f(f(...f(n)...)) where f(n) is the Farey fractal sequence, A131967.

This page as a plain text file.
%I A191774 #5 Mar 30 2012 18:57:33
%S A191774 1,2,1,1,2,1,1,1,2,2,1,1,1,1,2,1,2,1,1,1,1,2,1,2,2,1,1,2,1,1,1,1,1,2,
%T A191774 1,2,2,1,1,1,2,1,1,1,1,1,2,1,2,1,1,2,2,2,1,1,1,1,1,2,1,1,1,1,1,1,2,1,
%U A191774 1,2,1,1,2,2,2,2,1,1,1,1,1,1,2,1,2,1
%N A191774 Lim f(f(...f(n)...)) where f(n) is the Farey fractal sequence, A131967.
%C A191774 Suppose that f(1), f(2), f(3),... is a fractal sequence (a sequence which contains itself as a proper subsequence, such as 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, ...; if the first occurrence of each n is deleted, the remaining sequence is identical to the original; see the Wikipedia article for a rigorous definition).  Then for each n>=1, the limit L(n) of composites f(f(f...f(n)...)) exists and is one of the numbers in the set {k : f(k)=k}.  Thus, if f(2)>2, then L(n)=1 for all n; if f(2)=2 and f(3)>3, then L(n) is 1 or 2 for all n.  Examples:  A020903, A191770, A191774
%H A191774 Wikipedia, <a href="http://en.wikipedia.org/wiki/Fractal_sequence">Fractal sequence</a>
%e A191774 Write the counting numbers and A131967 like this:
%e A191774 1..2..3..4..5..6..7..8..9..10..11..12..13..14..15..
%e A191774 1..2..1..3..2..1..4..3..5..2...1...6...4...3...5...
%e A191774 It is then easy to check composites:
%e A191774 1->1, 2->2, 3->1, 4->3->1, 5->2, 6->1, 7->4->3->1,...
%t A191774 Farey[n_] := Select[Union@Flatten@Outer[Divide, Range[n + 1] - 1, Range[n]], # <= 1 &];
%t A191774 newpos[n_] := Module[{length = Total@Array[EulerPhi, n] + 1, f1 = Farey[n], f2 = Farey[n - 1], to},
%t A191774    to = Complement[Range[length], Flatten[Position[f1, #] & /@ f2]];
%t A191774    ReplacePart[Array[0 &, length],
%t A191774     Inner[Rule, to, Range[length - Length[to] + 1, length], List]]];
%t A191774 a[n_] := Flatten@Table[Fold[ReplacePart[Array[newpos, i][[#2 + 1]], Inner[Rule, Flatten@Position[Array[newpos, i][[#2 + 1]], 0], #1, List]] &, Array[newpos, i][[1]], Range[i - 1]], {i, n}];
%t A191774 t = a[12]; f[n_] := Part[t, n];
%t A191774 Table[f[n], {n, 1, 100}]          (* A131967 *)
%t A191774 h[n_] := Nest[f, n, 50]
%t A191774 t = Table[h[n], {n, 1, 200}]      (* A191774 *)
%t A191774 s = Flatten[Position[t, 1]]       (* A191775 *)
%t A191774 s = Flatten[Position[t, 2]]       (* A191776 *)
%Y A191774 Cf. A020903, A191770, A191775, A191776.
%K A191774 nonn
%O A191774 1,2
%A A191774 _Clark Kimberling_, Jun 16 2011